RADICAL β-FRAGMENTATION OF BICYCLO[3.3.0]CARBINOLAMIDES: SYNTHESIS OF FIVE- AND EIGHT-MEMBERED CYCLIC IMIDES

Rosendo Hernández, ${ }^{\text {a }}$ Daniel Melián, ${ }^{\text {b }}$ Thierry Prangé, ${ }^{\text {c }}$ and Ernesto Suárez ${ }^{\text {a* }}$
${ }^{\text {a }}$ Instituto de Productos Naturales y Agrobiología del C.S.I.C., Carretera de La Esperanza 2, 38206-La Laguna, Tenerife, Spain
${ }^{\mathrm{b}}$ Departamento de Química Orgánica, Universidad de La Laguna, Tenerife, Spain
${ }^{c}$ L.U.R.E., Université Paris-Sud, Paris, 91405 ORSAY, Cedex, France

Abstract

The influence of 4-alkyl or 4-aryl substituents in the regioselectivity of the β-fragmentation of carbinolamidyl radicals generated from the corresponding carbinolamides (7-13) by irradiation with visible light in the presence of (diacetoxyiodo)benzene and iodine is described. In the case of the less hindered carbinolamides 1-hydroxyazabicyclo[3.3.0]octan-3-one (7) and 4-(2'-phenylethyl)-1-hy-droxyazabicyclo[3.3.0]octan-3-one (8) important amounts of 8 -membered cyclic imides were obtained together with the expected 5 -membered imides (succinimides).

In a previous paper ${ }^{1}$ we have described the radical β-fragmentation of bicyclic carbinolamides by reaction with hypervalent organoiodine reagents and iodine as a method for the synthesis of succinimides. In the case of the 1-hydroxyazabicyclo[3.3.0]octan-3-one derivatives studied the reaction promoted by β-scission of the initially generated alkoxy radicals was completely regioselective. The fragmentation occurs exclusively between C_{1} and C_{8} to give 2,2-dialkyl-substituted succinimides in good yield (Scheme 1, path [a], $\mathrm{R}_{1}=\mathrm{R}_{2}=$ alkyl). Products coming from the alternative $\mathrm{C}_{1}-\mathrm{C}_{5}$ bond cleavage (path [b]) could not be found, only small amounts of isocyanates being formed as by-products by amidyl radical rearrangement. ${ }^{2}$
This observed regioselectivity is in apparent contradiction with the general rule that, in the β-fragmentation of alkoxy radicals, the relative rates of bond cleavage reflect the stabilities of the final products, and in general secondary radical intermediates are formed in preference to primary ones. ${ }^{3}$ However, it is not unprecedented in the literature, and Beckwith et al. ${ }^{4}$ have studied a similar case during the β-fission of the 9 -decalinoxyl radical. Taking these studies into account we have proposed the mechanism outlined in Scheme 1 for the radical fragmentation of carbinolamides.
The carbinolamidyl radical may undergo a fast but reversible β-fragmentation of the $C_{1}-C_{5}$ bond to give the secondary C -radical and a slower but essentially irreversible $\mathrm{C}_{1}-\mathrm{C}_{8}$ bond cleavage to afford the primary C radical. The second step rate would be dependent on the efficiency of the radical trapping. In hindered carbinolamides ($R_{1}=R_{2}=$ alkyl) k_{2} must be greater than k_{1}, and succinimide derivatives are formed exclusively. ${ }^{1}$

However, with less hindered carbinolamides ($\mathrm{R}_{1}=$ and/or $\mathrm{R}_{2}=\mathrm{H}$) we would expect an easier trapping of the secondary radical by the iodine atom directing the equilibrium to the formation of 8 -membered cyclic imides. In this paper we describe the preparation of 1-hydroxy-2-azabicyclo[3.3.0]octan-3-one (7) and its 4-monosubstituted derivatives $(\mathbf{8 - 1 3})$ in order to study the influence of the $\mathrm{C}-4$ tether in the trapping reaction and consequently in the regioselectivity of the carbinolamidyl radical β-fragmentation.

Scheme 1. DIB = (diacetoxyiodo)benzene
Although small ring imides, in particular succinimides and glutarimides, can be easily prepared by a variety of intramolecular reactions, ${ }^{5}$ the method gives low yields in the case of seven-membered rings, ${ }^{6}$ and e.g. adipimide is preferently prepared by oxidation of caprolactam. ${ }^{7}$ To our knowledge, 8 -membered cyclic imides have not been previously prepared. Nevertheless, eleven- ${ }^{8}$ and fourteen-membered ${ }^{9}$ macroimides have been synthesized using different ring expansion methodology.

RESULTS AND DISCUSSION

Synthesis of Carbinolamides (7-13). Carbinolamide (7) was synthesized by alkylation of cyclopentanone lithium enolate, generated from $1-[($ trimethylsilyl)oxy $]-1$-cyclopentene and methyllithium, in the presence of HMPA and chlorotitanium triisopropoxide, with iodoacetonitrile following the Noyori procedure. ${ }^{10}$ The nitrile (1) obtained was subsequently hydrolysed ${ }^{11}$ with $7.5 \% \mathrm{KOH}$ in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ to give the required carbinolamide (7) (Scheme 2).
The α, β-unsaturated ketones (2-6) were prepared by aldol condensation of cyclopentanone with the corresponding aldehydes under basic conditions. ${ }^{12}$ Treatment of these enones with KCN in $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}-\mathrm{AcOH}$ gave the corresponding carbinolamides (8-13). ${ }^{13}$
In all cases only one carbinolamide was obtained, with the C-4 tether in the more stable exo position. We have found, using molecular mechanics calculations, that exo isomers are $c a .1 \mathrm{Kcal} / \mathrm{mol}$ more stable than the corresponding endo isomers. The observed coupling constants ($2-4 \mathrm{~Hz}$) between $\mathrm{H}-\mathrm{C}_{4}$ and $\mathrm{H}-\mathrm{C}_{5}$ for the exo isomers are in good agreement with the calculated ones over a minimized structure using the program PCMODEL ${ }^{14}(2-2.5 \mathrm{~Hz})$. The calculated coupling constants between $\mathrm{H}-\mathrm{C}_{4}$ and $\mathrm{H}-\mathrm{C}_{5}$ for the endo isomers are

$2 \mathrm{R}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}$
$3 \mathrm{R}=\mathrm{CHMe}_{2}$
$5 \mathrm{R}=\mathrm{CHPh}_{2}$
$6 \mathrm{R}=\mathrm{Ph}$

1
$\xrightarrow{\mathrm{KOH} / \mathrm{EtO}}$

7

Table 1. Fragmentation of Carbinolamides (7-13) ${ }^{\text {a }}$

Entry		$\begin{gathered} \text { Reagents }^{\text {b }} \\ (\mathrm{mmol}) \end{gathered}$	Conditions				
			Time (min)	Temp. $\left({ }^{\circ} \mathrm{C}\right)$			
1	$7 \mathrm{R}=\mathrm{H}$	1.5/1.0	120	25	14 (24) ${ }^{\text {c }}$	15 (20)	
2	$8 \mathrm{R}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}$	1.5/1.0	30	20	16 (39)	17 (32)	18 (9)
3	$9 \mathrm{R}=\mathrm{CHMe}_{2}$	1.6/1.0	45	25	19 (59)	20 (2)	21 (7)
4		1.5/1.0	40	25	22 (56)	24 (2)	25 (3)
5	$11 \mathrm{R}=\frac{\mathrm{sh}}{s^{*} \mathrm{Cl}_{\mathrm{Me}}^{\mathrm{H}} \mathrm{H}}$	1.5/1.0	50	25	23 (61)	26 (3)	27 (10)
6	$12 \mathrm{R}=\mathrm{CHPh} 2$	1.7/0.9	45	20	28 (52)	29 (7)	30 (8)
7	$13 \mathrm{R}=\mathrm{Ph}$	1.5/1.0	30	25	31 (64)	32 (2) ${ }^{\text {d }}$	

[^0]spectrum of 14]. A better yield but similar regioselectivity was obtained when the reaction was performed with carbinolamide (8) (Entry 2).
When the β-fragmentation reaction was realized with a carbinolamide possessing a bulkier substituent at $\mathrm{C}-4$ 9-13 (Entries 3-7) the β-scission occurs preferentially at the $\mathrm{C}_{1}-\mathrm{C}_{8}$ bond to give the succinimide derivatives in good yield (52-64 \%). In these cases the alternative $\mathrm{C}_{1}-\mathrm{C}_{5}$ bond fragmentation occurs in low yield (2-15 \%) to give a mixture of $\mathrm{C}-3$ epimeric iodine derivatives.
The structure and relative stereochemistry of the 8 -membered cyclic imides were determined by a single crystal X-ray analysis ${ }^{15}$ of compound (25) (Figure 1) obtained from carbinolamide (10) (Entry 4). The eightmembered ring displays a quasi-boat conformation with the $\mathrm{C}_{2}-\mathrm{C}_{3}$ bond nearly parallel to the $\mathrm{C}_{5}-\mathrm{C}_{6}$ linkage. The ring conformation is very similar to the boat-chair conformation of cyclooctane ${ }^{16}$ with the imide group and adjacent carbons in a plane. For a structure such as (25) the relative configuration is $2 R^{*}, 3 S^{*}, 1^{\prime} S^{*}$. Consequently, the relative configuration of the macroimide (24) is $2 R^{*}, 3 R^{*}, 1^{\prime} S^{*}$.

Figure 1. X-Ray structure of $\mathbf{2 5}$

The ring conformation of $\mathbf{2 5}$ leads the $3 S^{*}$ iodine atom into a quasi-axial position while the $2 R^{*}$ substituent is in equatorial orientation. In its ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum the coupling constant between $\mathrm{H}-\mathrm{C}_{2}$ and $\mathrm{H}-\mathrm{C}_{3}$ is 4.1 Hz while this constant has a value of 11.4 Hz in the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum of the $\mathrm{C}-3$ epimeric compound (24). These experimental coupling constants are in good agreement with those calculated over a minimized structure (4 and 11 Hz , respectively). The assignments of the stereochemistry of the other medium cyclic C-3 epimeric pairs have been realized taking into account this difference between the $\mathrm{H}-\mathrm{C}_{2}$ and $\mathrm{H}-\mathrm{C}_{3}$ coupling constants.
In the fragmentation reaction of carbinolamide (13) only one 8 -membered imide could be isolated in low yield (Entry 7). Due to the superimposed of the $\mathrm{H}-\mathrm{C}_{2}$ and $\mathrm{H}-\mathrm{C}_{3}$ signals in its ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum the stereochemistry at $\mathrm{C}-3$ could not be determined.
Although the yields of macroimides are too small to be of preparative value, the formation of these compounds through some light on the mechanism of the fragmentation of carbinolamides.

EXPERIMENTAL SECTION

Melting points were determined with a Mettler FP 82 hot-stage apparatus and are uncorrected. Ir spectra were recorded on a Perkin-Elmer 1605/FTIR spectrophotometer in CHCl_{3} solutions. ${ }^{1} \mathrm{H}-\mathrm{Nmr}(200 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ $\mathrm{nmr}(50.3 \mathrm{MHz})$ spectra were recorded on a Bruker WP 200 SY spectrometer for solutions in CDCl_{3} with $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard and chemical shifts are expressed in parts per million (δ units) relative to internal reference $(\delta 0.00)$ and to the centre peak of $\mathrm{CDCl}_{3}(\delta 77.00)$, respectively. Low-resolution mass spectra were determined with Hewlett Packard 5930 A and VG Micromass ZAB-2F spectrometers and high-resolution mass spectra on a VG Micromass ZAB-2F spectrometer. Merck silica gel $0.063-0.2 \mathrm{~mm}$ was used for column chromatography. Circular layers of 1 mm of Merck silica gel 60 PF 254 were used on a Harrison Chromatotron for centrifugally assisted chromatography. Tlc analyses were conducted on silica gel plates and were visualized by spraying with 0.5% vanillin in $\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{EtOH}$ (4:1) and further heating until development of color. Commercial reagents and solvents were analytical grade or were purified by standard procedures prior to use. ${ }^{17}$ (Diacetoxyiodo)benzene 98% was purchased from Aldrich.
(2-Oxocyclopentyl)acetonitrile (1). To a solution of 1-[(trimethylsilyl)oxy]-1-cyclopentene ($1.95 \mathrm{~g}, 12.5$ mmol), in ether (30 ml), was added dropwise a 1.6 M ethereal solution of methyllithium ($8.6 \mathrm{ml}, 1.1$ equiv.) for 30 min under an argon atmosphere at room temperature. The solvent was evaporated under vacuum and dry tetrahydrofuran (100 ml) was added and the mixture was cooled to $-50^{\circ} \mathrm{C}$ and then hexamethylphosphoramide ($22 \mathrm{ml}, 125 \mathrm{mmol}$), chlorotitanium triisopropoxide ($3 \mathrm{ml}, 12.5 \mathrm{mmol}$), and iodoacetonitrile (4.5 ml , 62.5 mmol) were added, and the resulting solution was stirred at this temperature for 10 h . The reaction mixture was allowed to reach room temperature and then poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with $5 \% \mathrm{HCl}$ and $\mathrm{H}_{2} \mathrm{O}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by column chromatography (hexane-EtOAc, $85: 15$) to give cyanide derivative (1) $(600 \mathrm{mg}, 39 \%$): amorphous; ir $v_{\max } 2252,1745 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{nmr}(200 \mathrm{MHz}) \delta 1.6-2.6(8 \mathrm{H}, \mathrm{m}), 2.75(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}-\mathrm{nmr}(50.3$ MHz) $\delta 17.15$ (t), 20.08 (t), 28.81 (t), 36.98 (t), 45.32 (d), 117.88 (s$), 216.05$ (s$) ; \mathrm{ms} \mathrm{m} / \mathrm{z}$ (rel intensity) 123 $\left(\mathrm{M}^{+}, 49\right), 94(9), 80(10), 68(61), 55(100), 41$ (94); hrms Calcd for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NO}$ 123.06841. Found 123.06805. Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NO}: \mathrm{C}, 68.27 ; \mathrm{H}, 7.37$; N, 11.37. Found: C, $67.98 ; \mathrm{H}, 7.60 ; \mathrm{N}, 11.06$.

General Procedure for the Synthesis of Enones (2-6). To a solution of cyclopentanone ($8.4 \mathrm{~g}, 100 \mathrm{mmol}$) and aldehyde ($0.5-1$ equiv.) in methanol (50 ml), at $0{ }^{\circ} \mathrm{C}$ and with stirring, was added dropwise for 30 min , 0.5 M NaOH in methanol- $\mathrm{H}_{2} \mathrm{O}(14: 1)(60 \mathrm{ml})$. The mixture was allowed to warm up to room temperature and the stirring continued for the time stated in each case, then it was poured into water and the resulting aqueous solution acidulated with $5 \% \mathrm{HCl}$ and extracted with dichloromethane. Evaporation of the solvent led to a residue which was dissolved in benzene (100 ml) and treated with p-toluenesulfonic acid (p-tsa) ($4.7 \mathrm{~g}, 25$ mmol, 0.25 equiv.) at room temperature overnight, then poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with saturated aqueous $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$, dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), and concentrated. The crude product was purified by chromatography.
2-(3'-Phenylpropylidene)cyclopentanone (2). Cyclopentanone ($18.25 \mathrm{~g}, 217 \mathrm{mmol}$) and 3-phenylpropionaldehyde ($15.29 \mathrm{~g}, 114 \mathrm{mmol}$) in $\mathrm{MeOH}(50 \mathrm{ml})$ were treated with $2.7 \% \mathrm{NaOH}$ methanolic solution (75 ml) for 1 h , and the residue in $\mathrm{C}_{6} \mathrm{H}_{6}(65 \mathrm{ml})$ with p-tsa ($10.2 \mathrm{~g}, 54.3 \mathrm{mmol}$) according to the general method. Column chromatography of the residue (hexane-EtOAc, 9:1) gave $2\left(8.4 \mathrm{~g}, 37 \%\right.$): amorphous; ir $v_{\max } 3075$,
$3050,1710,1640,1600,1490,1450,1410,1380,1285,1260,1170,695,650 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{nmr}(200 \mathrm{MHz}) \delta$ $1.83\left(2 \mathrm{H}, \mathrm{qui}, J=7.4 \mathrm{~Hz}, 4-\mathrm{H}_{2}\right), 2.27\left(2 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, 5-\mathrm{H}_{2}\right), 2.44\left(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}, 2^{\prime}-\mathrm{H}_{2}\right), 2.75(2 \mathrm{H}, \mathrm{t}, J=$ $\left.7.5 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{2}\right), 6.56\left(1 \mathrm{H}, \mathrm{m}, \mathrm{l}^{\prime}-\mathrm{H}\right), 7.22\left(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}_{5}\right) ;{ }^{13} \mathrm{C}-\mathrm{nmr}(20.1 \mathrm{MHz}) \delta 19.71$ (t), $26.66(\mathrm{t}), 31.49$ (t), 34.56 (t), 38.47 (t), 126.09 (d), 128.37 (4xd), 134.45 (d), 137.97 (s), 141.09 (s), 206.43 (s). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 83.96 ; \mathrm{H}, 8.05$. Found: C, 84.14; H, 7.91.

2-Isobutylidenecyclopentanone (3). Cyclopentanone ($9.5 \mathrm{~g}, 113 \mathrm{mmol}$) and isobutyraldehyde ($7.2 \mathrm{~g}, 99.8$ $\mathrm{mmol})$ in methanol (50 ml) were treated with $2.8 \% \mathrm{NaOH}$ methanolic solution ($75 \mathrm{ml}, 52.5 \mathrm{mmol}$) for 24 h , and the residue purified by column chromatography (hexane-ethyl acetate, $90: 10$) to give $\mathbf{3}(4.96 \mathrm{~g}, 36 \%)$: amorphous; ir $v_{\text {max }} 1712,1635 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{nmr}(200 \mathrm{MHz}) \delta 1.04\left(6 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, 2^{-}-\mathrm{Me}_{2}\right), 1.93(2 \mathrm{H}, q u i, J$ $\left.=7.4 \mathrm{~Hz}, 4-\mathrm{H}_{2}\right), 2.33\left(2 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, 5-\mathrm{H}_{2}\right), 2.46\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 2.60\left(2 \mathrm{H}, \mathrm{dt}, J=7.4,2.6 \mathrm{~Hz}, 3-\mathrm{H}_{2}\right), 6.40$ $\left(1 \mathrm{H}, \mathrm{dm}, J=9.6 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}-\mathrm{nmr}(50.3 \mathrm{MHz}) \delta 19.65(\mathrm{t}), 21.49(2 \mathrm{xq}), 26.23(\mathrm{t}), 28.81(\mathrm{~d}), 38.19(\mathrm{t})$, 134.81 (s), 141.67 (d), 205.79 (s). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}: \mathrm{C}, 78.21 ; \mathrm{H}, 10.21$. Found: C, 78.43; H, 9.98.
(\pm)-2-($\mathbf{2}^{\prime}$-Phenylpropylidene)cyclopentanone (4). Cyclopentanone ($9.94 \mathrm{~g}, 118.3 \mathrm{mmol}$) and (\pm)-2-phenylpropionaldehyde ($16.18 \mathrm{~g}, 120.6 \mathrm{mmol}$) in methanol (50 ml) were treated with $\mathrm{NaOH}(4.2 \mathrm{~g}, 105 \mathrm{mmol}$) in methanol- $\mathrm{H}_{2} \mathrm{O}(15: 1)(160 \mathrm{ml})$ for 2 h at $0^{\circ} \mathrm{C}$. The residue in $\mathrm{C}_{6} \mathrm{H}_{6}(50 \mathrm{ml})$ was treated with p-tsa $(10.5 \mathrm{~g}$, 55.9 mmol) according to the general method. Column chromatography of the residue (hexane-ethyl acetate, 97:3) gave 4 ($13.98 \mathrm{~g}, 58 \%$): amorphous; ir $v_{\text {max }} 3080,3060,1713,1642,1605,1490,1450,1400,1375$, 1290. 1270, 1190, 1050, 1030, 830, $700 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{nmr}(200 \mathrm{MHz}) \delta 1.42(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, 1 \cdot \mathrm{Me}), 1.93$ ($2 \mathrm{H}, \mathrm{qui}, J=7.4 \mathrm{~Hz}, 4-\mathrm{H}_{2}$), $2.33\left(2 \mathrm{H}, \mathrm{t}, J=8.4 \mathrm{~Hz}, 5-\mathrm{H}_{2}\right), 2.63\left(2 \mathrm{H}, \mathrm{dt}, J=7.2,2.6 \mathrm{~Hz}, 3-\mathrm{H}_{2}\right), 3.63(1 \mathrm{H}, \mathrm{m}$, $\left.2^{\prime}-\mathrm{H}\right), 6.67\left(1 \mathrm{H}, \mathrm{dt}, J=9.6,2.7 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 7.27\left(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}_{5}\right) ;{ }^{13} \mathrm{C}-\mathrm{nmr}(50.3 \mathrm{MHz}) \delta 19.69(\mathrm{t}), 21.37(\mathrm{q})$, 26.71 (t), 38.39 (t), 40.03 (d), 126.51 (d), 126.99 ($2 x d$), 128.64 ($2 x d$), 135.93 (s), 139.34 (d), 144.30 (s), 207.06 (s). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 83.96 ; \mathrm{H}, 8.05$. Found: C, 84.17; H, 7.81.

2-($2^{\prime}, 2^{\prime}$-Diphenyethylidene)cyclopentanone (5). Cyclopentanone ($8.53 \mathrm{~g}, 101.4 \mathrm{mmol}$) and diphenylacetaldehyde ($9.95 \mathrm{~g}, 50.7 \mathrm{mmol}$) in methanol (80 ml) were treated with $\mathrm{NaOH}(2.1 \mathrm{~g}, 52.5 \mathrm{mmol}$) in methanol$\mathrm{H}_{2} \mathrm{O}(9: 1)(53 \mathrm{ml})$ for 24 h . The residue in $\mathrm{C}_{6} \mathrm{H}_{6}(45 \mathrm{ml})$ was treated with p-tsa $(9.5 \mathrm{~g})$ and led to a crude which was purified by column chromatography (hexane-ethyl acetate, $95: 5$) to give 5 ($7.57 \mathrm{~g}, 57 \%$): mp $80-81^{\circ} \mathrm{C}$ (EtOAc-hexane); ir $v_{\max } 1715,1650,1605,1495,1455,1410,1362,1180,1040,990,910,700$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{nmr}(200 \mathrm{MHz}) \delta 1.95\left(2 \mathrm{H}\right.$, qui, $\left.J=7.4 \mathrm{~Hz}, 4-\mathrm{H}_{2}\right), 2.36\left(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, 5-\mathrm{H}_{2}\right), 2,66(2 \mathrm{H}, \mathrm{dt}, J=$ $\left.7.2,2.6 \mathrm{~Hz}, 3-\mathrm{H}_{2}\right), 4.83\left(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}, 1{ }^{\prime}-\mathrm{H}\right), 7.03\left(1 \mathrm{H}, \mathrm{dt}, J=9.9,2.7 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 7.17(10 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar}-\mathrm{H}_{10}$); ${ }^{13} \mathrm{C}-\mathrm{nmr}(50.3 \mathrm{MHz}) \delta 19.43(\mathrm{t}), 26.63(\mathrm{t}), 38.33(\mathrm{t}), 50.75(\mathrm{~d}), 126.56(2 \mathrm{xd}), 127.97$ (4 xd), 128.48 (4 xd), 136.02 (d), 137.20 (s), 142.33 (2 xs), 206.85 (s$) ; \mathrm{ms} \mathrm{m} / \mathrm{z}$ (rel intensity) 262 ($\mathrm{M}^{+}, 100$), 247 (10), 244 (7), 232 (6), 217 (6), 206 (81), 205 (51), 191 (28), 178 (13), 167 (19), 165 (43), 152 (18), 143 (21), 129 (21), 115 (24), 91 (63), 77 (13); hrms Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}$ 262.1358. Found 262.1367. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}$, 86.99; H, 6.92. Found: C, 86.88; H, 7.15.

2-Benzylidenecyclopentanone (6). To a mixture of cyclopentenone ($10.9 \mathrm{~g}, 130 \mathrm{mmol}$) and benzaldehyde $(6.58 \mathrm{~g}, 62 \mathrm{mmol})$ was added a solution of $\mathrm{NaOH}(7.17 \mathrm{~g}, 179.3 \mathrm{mmol})$ in water (864 ml) for 10 h . Column chromatograhy of the residue gave $6(7.46 \mathrm{~g}, 70 \%)$: $\mathrm{mp} 69-70^{\circ} \mathrm{C}$ (pentane) (iti., ${ }^{18} 69-71{ }^{\circ} \mathrm{C}$); ir $\mathrm{v}_{\text {max }} 1712$, 1624, 1576, 1493, 1451, 1410, 1308, 1290, 1275, 1180, $692 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{nmr}(200 \mathrm{MHz}) \delta 2.03(2 \mathrm{H}, \mathrm{qui}, J=$ $\left.7.4 \mathrm{~Hz}, 4-\mathrm{H}_{2}\right), 2.41\left(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, 5-\mathrm{H}_{2}\right) 2.99\left(2 \mathrm{H}, \mathrm{dt}, J=7.2,2.8 \mathrm{~Hz}, 3-\mathrm{H}_{2}\right), 7.41\left(6 \mathrm{H}, \mathrm{m}, \mathrm{l}^{\prime}-\mathrm{H}\right.$ and
$\mathrm{Ar}_{\mathrm{H}} \mathrm{H}_{5}$); ${ }^{13} \mathrm{C}-\mathrm{nmr}(50.3 \mathrm{MHz}) \delta 20.01$ (t), 29.17 (t), 37.48 (t), 128.54 (2 xd), 129.14 (d), 130.34 (2 xd), 131.95 (d), 135.37 (s), 135.96 (s), 207.68 (s); ms m / z (rel intensity) 172 ($\mathrm{M}^{+}, 83$), 171 (100), 157 (1), 143 (6), 129 (32), 115 (32), 102 (4), 91 (4), 89 (5), 77 (3), 71 (6); hrms Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}$ 172.0888. Found 172.0886. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}_{2}$: C, $83.69 ; \mathrm{H}, 7.02$. Found: C, $83.54 ; \mathrm{H}, 7.06$.
($\mathbf{(})$-($1 \mathbf{R}^{*}, \mathbf{5} S^{*}$)-1-Hydroxy-2-azabicyclo[3.3.0]octan-3-one (7). To a solution of cyanide (1) ($50 \mathrm{mg}, 4.07$ mmol) in $\mathrm{EtOH}(14 \mathrm{ml})$ was added $7.5 \% \mathrm{KOH}$ in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(9: 1)(40 \mathrm{ml}, 50.8 \mathrm{mmol})$ and the resulting mixture was stirred at room temperature for 48 h . Chromatotron chromatography of the residue (EtOAc-acetone, $75: 25$) gave the carbinolamide (7)($320 \mathrm{mg}, 56 \%$): $\mathrm{mp} 138-140^{\circ} \mathrm{C}$ (acetone); ir $v_{\max } 3601,3423,1702$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{nmr}(200 \mathrm{MHz}) \delta 1.46(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 1.74\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right), 1.94\left(2 \mathrm{H}, \mathrm{dd}, J=5.3,7.8 \mathrm{~Hz}, 8-\mathrm{H}_{2}\right), 2.06$ $(1 \mathrm{H}, \mathrm{dd}, J=3.8,17.8 \mathrm{~Hz}, 4-\mathrm{H}), 2.14(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.55(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.83(1 \mathrm{H}, \mathrm{dd}, J=9.6,17.8 \mathrm{~Hz}, 4-\mathrm{H})$, $5.20(1 \mathrm{H}, \mathrm{m}, \mathrm{O}-\mathrm{H}), 7.43(1 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{nmr}(50.3 \mathrm{MHz}) \delta 24.45(\mathrm{t}), 33.97(\mathrm{t}), 37.69(\mathrm{t}), 39.77(\mathrm{t}), 45.69$ (d), 98.27 (s), 177.70 (s$) ; \mathrm{ms} \mathrm{m} / \mathrm{z}$ (rel intensity) $141\left(\mathrm{M}^{+}, 14\right.$), 126 (4), 112 (100), 98 (36), 84 (22), 69 (16), 55 (36); hrms Calcd for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}_{2}$ 141.07898. Found 141.07993. Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}_{2}: \mathrm{C}, 59.56 ; \mathrm{H}$, 7.85; N, 9.92. Found: C, 59.42; H, 7.99; N, 9.83.

General Procedure for the Synthesis of 4-Alkyl-1-hydroxy-2-azabicyclo[3.3.0]octan-3-ones (8-13). To a solution of enone (10 mmol) in ethanol (25 ml) was added a solution of $\mathrm{KCN}(1.3 \mathrm{~g}, 20 \mathrm{mmol})$ in EtOHwater (20:1) (25 ml). To the resulting mixture was added dropwise acetic acid ($0.3 \mathrm{ml}, 5 \mathrm{mmol}$) in EtOH (15 $\mathrm{ml})$ and the mixture stirred for the time and temperature stated in each case, then poured over water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with saturated aqueous NaHCO_{3} and water, dried, evaporated, and the residue purified by chromatography.
(\pm)-($1 R^{*}, 4 S^{*}, 5 S^{*}$)-4-(2-Phenylethyl)-1-hydroxy-2-azabicyclo[3.3.0]octan-3-one (8). Enone (2) ($6 \mathrm{~g}, 30$ $\mathrm{mmol})$ in $\mathrm{EtOH}(150 \mathrm{ml})$ and water (7.5 ml) was allowed to react for 20 h at $45^{\circ} \mathrm{C}$ with $\mathrm{KCN}(3.9 \mathrm{~g}, 60$ $\mathrm{mmol})$ and acetic acid ($0.9 \mathrm{ml}, 15 \mathrm{mmol}$) according to the general method. Column chromatography of the residue (hexane-EtOAc, 1:1) gave the carbinolamide $(8)(3.89 \mathrm{~g}, 53 \%): \mathrm{mp} 162-163{ }^{\circ} \mathrm{C}$ (EtOAc); ir $v_{\text {max }} 3585$, $3400,3080,3060,1680,1585,1490,1450,1300,1290,1180,1080,698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{nmr}(200 \mathrm{MHz}) \delta 1.4-1.9$ $(6 \mathrm{H}, \mathrm{m}), 2.0-2.3(3 \mathrm{H}, \mathrm{m}), 2.5-2.8(3 \mathrm{H}, \mathrm{m}), 6.41(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{O}-\mathrm{H}), 6.52(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N}-\mathrm{H}), 7.23\left(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}_{5}\right)$; ${ }^{13} \mathrm{C}-\mathrm{nmr}(50.3 \mathrm{MHz}) \delta 24.73$ (t), 33.52 (2 xt), 33.83 (t), 40.28 (t), 49.52 (d), 52.29 (d), 96.71 (s$), 125.92$ (d), $128.34(2 \mathrm{xd}), 128.45(2 \mathrm{xd}), 141.34$ (s), 179.43 (s) $\mathrm{ms} \mathrm{m} / \mathrm{z}$ (rel intensity) $245\left(\mathrm{M}^{+}, 2\right), 227$ (4), 182 (4), 168 (5), 155 (15), 141 (100), 124 (38), 113 (19), 91 (79), 77 (16); hrms Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2}$ 245.1416. Found 245.1438. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2}$: C, $73.44 ; \mathrm{H}, 7.81 ; \mathrm{N}, 5.71$. Found: C, $73.53 ; \mathrm{H}, 7.68 ; \mathrm{N}, 5.85$.
(\pm)-($\left.1 R^{*}, 4 S^{*}, 5 S^{*}\right)$-4- Isopropyl -1-hydroxy-2-azabicyclo[3.3.0]octan-3-one (9). Enone (3) (4.83 g, 35 $\mathrm{mmol})$ in $\mathrm{EtOH}(200 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(9 \mathrm{ml})$ was treated with $\mathrm{KCN}(4.55 \mathrm{~g}, 70 \mathrm{mmol})$ and $\mathrm{AcOH}(1.05 \mathrm{ml}, 17.5$ mmol) for 30 h at $50{ }^{\circ} \mathrm{C}$. Column chromatography of the residue (benzene-EtOAc, 65:35) gave the carbinolamide (9) ($3.66 \mathrm{~g}, 57 \%$): mp 123-124 ${ }^{\circ} \mathrm{C}$ (acetone-pentane); ir $v_{\max } 3590,3405,1685 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{nmr}$ (200 $\mathrm{MHz}) \delta 0.90\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, 1^{\prime}-\mathrm{Me}\right), 0.98\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, 1^{\prime}-\mathrm{Me}\right), 1.4-1.95(6 \mathrm{H}, \mathrm{m}), 2.0-2.3(3 \mathrm{H}, \mathrm{m})$, $2.54(1 \mathrm{H}, \mathrm{m}, \mathrm{O}-\mathrm{H}), 6.33(1 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{nmr} 18.02$ (q), 20.47 (q), 24.76 (t), 28.27 (d), 34.32 (t), 40.69 (t), 47.32 (d), 56.41 (d), 96.31 (s), 178.86 (s); ms m/s (rel intensity) $183\left(\mathrm{M}^{+}, 19\right), 168$ (20), 165 (1), 154 (7), 140 (100), 124 (16), 122 (13), 112 (20), 99 (27), 85 (41); hrms Calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{2}$: 183.1259. Found 183.1255. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{2}$: C, 65.54; H, 9.35; N, 7.64. Found: C, 65.39; H, 9.38; N, 7.78.
$(\pm)-\left(1 R^{*}, 4 S^{*}, 5 S^{*}, 1^{\prime} S^{*}\right)$ - and $(\pm)-\left(1 R^{*}, 4 S^{*}, 5 S^{*}, 1 R^{*}\right)-4$-(1-Phenylethyl)-1-hydroxy-2-azabicyclo[3.3.0]oc-tan-3-ones (10) and (11). Enone (4) ($10 \mathrm{~g}, 50 \mathrm{mmol}$) was treated as described previously at $50^{\circ} \mathrm{C}$ for 12 h . Column chromatography of the residue (hexane-EtOAc, 60:40) gave the carbinolamides (10) ($6.49 \mathrm{~g}, 53 \%$) and (11) (1.2 g, 10%).
Compound (10): $\mathrm{mp} 122-123{ }^{\circ} \mathrm{C}$ (hexane); ir $v_{\max } 3530,3515,3418,3090,3060,1680,1600,1495,1450$, 1405, 1370, 1290, 1080, 1045, 1002, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{nmr}(200 \mathrm{MHz}) \delta 1.42\left(3 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 1^{\prime}-\mathrm{Me}\right)$, $1.35-1.75(6 \mathrm{H}, \mathrm{m}), 2.15(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.19(1 \mathrm{H}, \mathrm{m}, \mathrm{O}-\mathrm{H}), 2.37(1 \mathrm{H}, \mathrm{dd}, J=3.2,2.4 \mathrm{~Hz}, 4-\mathrm{H}), 3.64(1 \mathrm{H}, \mathrm{dq}, J$ $\left.=3.4,7.2 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 5.83(1 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H}), 7.32\left(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}_{5}\right) ;{ }^{13} \mathrm{C}-\mathrm{nmr}(50.3 \mathrm{MHz}) \delta 18.66$ (q), $24.45(\mathrm{t})$, 34.52 (t), 39.18 (t), 39.46 (d), 47.24 (d), 57.13 (d), 96.14 (s), 126.93 (d), 128.00 (2 xd), 128.38 (2 xd), 142.54 (s), $178.10(\mathrm{~s}) ; \mathrm{ms} \mathrm{m} / \mathrm{s}$ (rel intensity) $245\left(\mathrm{M}^{+}, 42\right), 230(3), 227(5), 202(10), 162(58), 145$ (17), 141 (73), 124 (23), 122 (13), 115 (17), 105 (100), 91(27), 85 (59), 77(34); hrms Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2} 245.1415$. Found 245.1410. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2}: \mathrm{C}, 73.44 ; \mathrm{H}, 7.81 ; \mathrm{N}, 5.71$. Found: C, $73.35 ; \mathrm{H}, 8.01 ; \mathrm{N}, 5.66$.

Compound (11): $\mathrm{mp} 142-144{ }^{\circ} \mathrm{C}$ (acetone-hexane); ir $v_{\max } 3610,3515,3418,3085,3060,1690,1600,1492$, $1451,1408,1385,1130,1080,1050,1000,705 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{nmr}(200 \mathrm{MHz}) \delta 1.50\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{I}^{\prime}-\mathrm{Me}\right)$, $1.2-1.9(6 \mathrm{H}, \mathrm{m}), 2.00(1 \mathrm{H}, \mathrm{m}), 2.24(1 \mathrm{H}, \mathrm{dt}, J=9.3,3.7 \mathrm{~Hz}, 5-\mathrm{H}), 2.45(1 \mathrm{H}, \mathrm{t}, J=3.8 \mathrm{~Hz}, 4-\mathrm{H}), 3.27(1 \mathrm{H}$, $\left.\mathrm{dq}, J=4.0,6.9 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 6.25(1 \mathrm{H}, \mathrm{m}, \mathrm{O}-\mathrm{H}), 6.31(1 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H}), 7.30\left(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}_{5}\right) ;{ }^{13} \mathrm{C}-\mathrm{nmr}(50.3 \mathrm{MHz})$ $\delta 16.41$ (q), 24.59 (t), 34.19 (t), 40.21 (d), 40.23 (t), 49.78 (d), 56.71 (d), 96.00 (s), 126.61 (d), 127.60 (2 xd), 129.51 (2 xd), 143.62 (s , 177.43 (s); $\mathrm{ms} \mathrm{m} / \mathrm{z}$ (rel intensity) 245 ($\mathrm{M}^{+}, 56$), 230 (4), 227 (6), 202 (11), 162 (100), 145 (29), 141 (47), 129 (10), 124 (17), 115 (13), 105 (85), 91 (22), 85 (37), 77 (26); hrms Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2}$ 245.1415. Found 245.1409. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2}: \mathrm{C}, 73.44 ; \mathrm{H}, 7.81 ; \mathrm{N}, 5.71$. Found: C , $73.48 ; \mathrm{H}, 7.70 ; \mathrm{N}, 5.83$.
$(\pm)-\left(1 R^{*}, 4 S^{*}, 5 S^{*}\right)$-4-Diphenylmethyl-1-hydroxy-2-azabicyclo[3.3.0]octan-3-one (12). Compound (5) (2 g , 7.63 mmol) was treated as described above, for 24 h at $50^{\circ} \mathrm{C}$. To the residue in $\mathrm{EtOH}(50 \mathrm{ml})$ was added $\mathrm{NaOH}(0.5 \mathrm{~g}, 12.5 \mathrm{mmol})$ and the resulting solution stirred at room temperature for 24 h . Column chromatography of the residue (hexane-EtOAc, 1:1) gave the carbinolamide (12) ($1.478 \mathrm{~g}, 63 \%$): mp 174-175.5 ${ }^{\circ} \mathrm{C}$ (acetone-hexane); ir $v_{\max } 3550,3420,1695,1600,1490,1450,1400,1340,1085,1000,975,695 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{nmr}(200 \mathrm{MHz}) \delta 1.7-1.9(5 \mathrm{H}, \mathrm{m}), 2.3-2.6(2 \mathrm{H}, \mathrm{m}), 3.02(1 \mathrm{H}, \mathrm{t}, J=2.4 \mathrm{~Hz}, 4-\mathrm{H}), 4.95(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}$, $\left.1^{\prime}-\mathrm{H}\right), 6.06(1 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H}), 7.28\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}^{2}-\mathrm{H}_{10}\right) ;{ }^{13} \mathrm{C}-\mathrm{nmr}(50.3 \mathrm{MHz}) \delta 24.40(\mathrm{t}), 34.67(\mathrm{t}), 39.20(\mathrm{t}), 47.80$ (d), 50.72 (d), 54.42 (d), 96.32 (s), 126.58 (d), 127.24 (d), 128.35 (2 xd), 128.46 (2 xd), 128.52 (2 xd), 129.56 (2xd), 141.95 (s), 142.28 (s), 178.15 (s$) ; \mathrm{ms} \mathrm{m} / \mathrm{z}$ (rel intensity) 307 ($\mathrm{M}^{+}, 29$), 289 (6), 244 (1), 224 (62), 207 (24), 178 (14), 167 (100), 165 (64), 152 (34), 128 (10), 115 (14), 91 (6), 77 (6); hrms Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{2}$ 307.1572. Found 307.1580. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{2}$: C, 78.15; H, 6.89; N, 4.56. Found: C, 77.93; H, 7.02; N, 4.53.
(\pm)-($1 R^{*}, 4 R^{*}, 5 S^{*}$)-4-Phenyl-1-hydroxy-2-azabicyclo[3.3.0]octan-3-one (13). Compound (6) (5 g, 29.1 mmol) was treated according to the procedure described for (4). Column chromatography of the residue (hexane-EtOAc, 30:70) gave the carbinolamide (13) ($3.92 \mathrm{~g}, 62 \%$): mp $145-147{ }^{\circ} \mathrm{C}$ (hexane); ir $v_{\max } 3615$, $3440,1705,1603,1500,1457,1400,1080,1010,990 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{nmr}(200 \mathrm{MHz}) \delta 1.6-2.0(5 \mathrm{H}, \mathrm{m}), 2.18(1 \mathrm{H}$, $\mathrm{m}), 2.61(1 \mathrm{H}, \mathrm{dt}, J=8.8,3.8 \mathrm{~Hz}, 5-\mathrm{H}), 3.34(1 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}, 4-\mathrm{H}), 4.45(1 \mathrm{H}, \mathrm{m}, \mathrm{O}-\mathrm{H}), 6.68(1 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H})$, 7.25 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}_{5}$) ${ }^{13} \mathrm{C}-\mathrm{nmr}(50.3 \mathrm{MHz}) \delta 24.68$ (t), 33.43 (t), 40.37 (t), 55.00 (d), 56.79 (d), 96.42 (s),
127.07 (d), $128.09(2 x d), 128.80(2 x d), 139.69(\mathrm{~s}), 177.47(\mathrm{~s}) ; \mathrm{ms} \mathrm{m} / \mathrm{s}$ (rel intensity) $217\left(\mathrm{M}^{+}, 71\right), 199(37)$, 174 (100), 170 (35), 156 (14), 146 (33), 117 (53), 115 (70), 103 (21), 91 (59), 77 (21); hrms Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2}$ 217.1103. Found 217.1103. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2}$: C, 71.87; H, 6.96; $\mathrm{N}, 6.45$. Found: C , 71.95 ; H, 7.04; N, 6.30 .

Fragmentation of 4-Alkyl-1-hydroxy-2-azabicyclo[3.3.0]octan-3-one Derivatives (7-13): General Procedure. A solution of the carbinolamide (1 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 to 50 ml dried over 3-4 \AA molecular sieves, in accord with the solubility of carbinolamide), containing (diacetoxyiodo)benzene ($483 \mathrm{mg}, 1.5 \mathrm{mmol}$) and I_{2} ($254 \mathrm{mg}, 1 \mathrm{mmol}$), was irradiated with $2 \times 100 \mathrm{~W}$ tungsten-filament lamps for the time and temperature stated in each case. The reaction mixture was then poured into aqueous sodium thiosulfate and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and the residue purified by chromatotron chromatography.

Fragmentation of (\pm)-($1 \mathbf{R}^{*}, 5 S^{*}$)-1-Hydroxy-2-azabicyclo[3.3.0]octan-3-one (7). Carbinolamide (7)(242 mg, 1.72 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(86 \mathrm{ml})$ under Ar was treated with (diacetoxyiodo)benzene ($831 \mathrm{mg}, 2.58 \mathrm{mmol}$) and iodine ($438 \mathrm{mg}, 1.72 \mathrm{mmol}$) as described previously at $25^{\circ} \mathrm{C}$ for 2 h , to give after chromatotron chromatography (hexane-EtOAc, 70:30) (\pm)-2-(3'-iodopropyl)succinimide (14) ($110 \mathrm{mg}, 24 \%$) and (\pm)-3-iodoperhydroazo-cine-2,8-dione (15) ($90 \mathrm{mg}, 20 \%$).
Compound (14): mp $93.5-95{ }^{\circ} \mathrm{C}$ (acetone-pentane); ir $\mathrm{v}_{\max } 3404,1786,1709 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{nmr}$ (200 MHz) δ $1.68(1 \mathrm{H}, \mathrm{m}), 1.8-2.1(3 \mathrm{H}, \mathrm{m}), 2.41(1 \mathrm{H}, \mathrm{dd}, J=8.3,21.6 \mathrm{~Hz}, 2-\mathrm{H}), 2.86(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.90(1 \mathrm{H}, \mathrm{dd}, J=8.9$, $21.3 \mathrm{~Hz}, 2-\mathrm{H}), 3.19\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{2}\right), 9.80(1 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{nmr}(50.3 \mathrm{MHz}) \delta 5.24(\mathrm{t}), 30.45(\mathrm{t}), 31.94$ (t), 35.49 (t), 40.26 (d), 177.07 (s), 180.24 (s); ms m/z (rel intensity) $268\left(\mathrm{M}^{+}+1,6\right.$), 155 (12), 140 (100), 127 (29), 97 (20), 69 (98); hrms Calcd for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{I}$ 267.98346. Found 267.98429. Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{NO}_{2} \mathrm{I}$: C, 31.48; H, 3.77; N, 5.24. Found: C, $31.60 ;$ H, 3.65 ; N, 5.28 .

Compound (15): mp 119-121 ${ }^{\circ} \mathrm{C}$ (acetone-pentane); ir $\mathrm{v}_{\max } 3351,1686 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{nmr}(200 \mathrm{MHz}) \delta 1.8-2.05$ $(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 5-\mathrm{H}), 2.05-2.25(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 5-\mathrm{H}), 2.80(1 \mathrm{H}, \mathrm{ddd}, J=7.3,10.7,14.0 \mathrm{~Hz}, 6-\mathrm{H}), 3.07(1 \mathrm{H}, \mathrm{ddd}, J$ $=4.8,13.6,14.0 \mathrm{~Hz}, 6-\mathrm{H}), 3.06(1 \mathrm{H}, \mathrm{dd}, J=7.1,14.8 \mathrm{~Hz}, 2-\mathrm{H}), 3.71(1 \mathrm{H}, \mathrm{dd}, J=10.2,14.8 \mathrm{~Hz}, 2-\mathrm{H}), 4.62$ ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$); ${ }^{13} \mathrm{C}-\mathrm{nmr}(50.3 \mathrm{MHz}) \delta 21.68$ (d), 22.49 (t), 34.12 (t), 35.00 (t), 48.33 (t), 169.56 (s), 172.50 (s); $\mathrm{ms} \mathrm{m} / \mathrm{z}$ (rel intensity) $267\left(\mathrm{M}^{+}, 13\right), 140(31), 127(35), 122$ (6), 112 (11), 98 (79), 97 (75), 69 (100); hrms Calcd for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{NO}_{2} \mathrm{I}$ 266.97563. Found 266.97585. Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{NO}_{2} \mathrm{I}$: C, 31.48; $\mathrm{H}, 3.77 ; \mathrm{N}, 5.24$. Found: C, 31.51; H, 3.86; N, 5.12.

Fragmentation of (\pm)-($\left.1 \mathbf{R}^{*}, 4 S^{*}, 5 S^{*}\right)$-4-(2'-Phenylethyl)-1-hydroxy-2-azabicyclo[3.3.0]octan-3-one (8). A solution of carbinolamide (8) ($0.5 \mathrm{~g}, 2.04 \mathrm{mmol}$), (diacetoxyiodo)benzene ($985 \mathrm{mg}, 3.06 \mathrm{mmol}$) and iodine ($518 \mathrm{mg}, 2.04 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 ml) was allowed to react according to the general method. After 30 min at $20^{\circ} \mathrm{C}$ and usual work-up, the residue gave, after column chromatography (hexane-EtOAc, $90: 10$), (\pm)$\left(2 R^{*}, 3 R^{*}\right)$-2-(2'-phenylethyl)-3-iodoperhydroazocine-2,8-dione (17) $(242 \mathrm{mg}, 32 \%)$ and a polar fraction which was separated by fractional crystallization from EtOAc to give (\pm)-($2 S^{*}, 3 S^{*}$)-2-(2^{\prime}-phenylethyl)-3-($3^{\prime \prime}-$ iodopropyl)succinimide (16) ($295 \mathrm{mg}, 39 \%$) and (\pm)-($2 R^{*}, 3 S^{*}$)-2-(2'-phenylethyl)-3-iodoperhydroazocine-2,8-dione (18) ($68 \mathrm{mg}, 9 \%$).

Compound (16): $\mathrm{mp} 95-96^{\circ} \mathrm{C}$ (EtOAc); ir $v_{\max } 3395,3087,3060,1770,1720,1705,1595,1487,1445$, $1340,1170,695 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{nmr}(200 \mathrm{MHz}) \delta 1.6-2.1(5 \mathrm{H}, \mathrm{m}), 2.1-2.3(1 \mathrm{H}, \mathrm{m}), 2.54(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 3-\mathrm{H}), 2.80$ $\left(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}_{2}\right), 3.17\left(2 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}, 3^{\prime \prime}-\mathrm{H}_{2}\right), 7.23\left(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}_{5}\right), 8.93(1 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{nmr}$
(20.1 MHz) $\delta 5.35$ (t$), 29.91$ ($), 31.58$ (t$), 32.30$ (t$), 32.52$ (t$), 45.78$ (d), 46.05 (d), 126.05 (d), 128.13 (2 xd), 128.32 (2 xd), 140.22 (s), 179.25 (s), $179.40(\mathrm{~s}) ; \mathrm{ms} \mathrm{m} / \mathrm{z}$ (rel intensity) $371\left(\mathrm{M}^{+}, 4\right), 267$ (40), 244 (46), 140 (100), 123 (13), 112 (33), 105 (23), 98 (39), 91 (97), 77 (14); hrms Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{I} 371.0384$. Found 371.0338. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{I}$: C, $48.53 ; \mathrm{H}, 4.89 ; \mathrm{N}, 3.77$. Found: C, $48.57 ; \mathrm{H}, 4.75 ; \mathrm{N}, 3.83$.

Compound (17): $\mathrm{mp} 133-135^{\circ} \mathrm{C}$ (pentane); ir $v_{\max } 3335,3080,3055,1685,1595,1485,1440,1400,1350$, $1320,1250,1155,1140,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{nmr}(200 \mathrm{MHz}) \delta 1.6-2.9(10 \mathrm{H}, \mathrm{m}), 3.27(1 \mathrm{H}, \mathrm{dt}, J=9.9,2.7 \mathrm{~Hz}$, $2-\mathrm{H}), 4.22(1 \mathrm{H}, \mathrm{dt}, J=10.8,1.7 \mathrm{~Hz}, 3-\mathrm{H}), 7.24\left(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}_{5}\right), 8.20(1 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{nmr}(50.3 \mathrm{MHz}) \delta$: 23.39 (t), 33.13 (t), 33.36 (t), 33.89 (d), 34.27 ($t), 35.16$ (t), 53.61 (d), 126.27 (d), 128.42 ($2 \times \mathrm{xd}$), 128.54 (2 xd), 140.56 (s), 170.34 (s), 172.33 (s); ms m/z (rel intensity) 371 ($\mathrm{M}^{+}, 6$), 244 (13), 227 (1), 216 (2), 199 (3), 181 (5), 171 (3), 155 (3), 140 (100), 123 (72), 117 (45), 112 (55), 105 (16), 104 (29), 95 (46), 91 (98), 77 (32); hrms Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{I}$ 371.0384. Found 371.0377. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{I}: \mathrm{C}, 48.53 ; \mathrm{H}, 4.89 ; \mathrm{N}$, 3.77. Found: C, 48.72; H, 4.63; N, 3.79.

Compound (18): $\mathrm{mp} 179-180^{\circ} \mathrm{C}$ (EtOAc); ir $v_{\max } 3340,3080,3060,1690,1600,1490,1450,1380,1350$, $1320 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{nmr}(200 \mathrm{MHz}) \delta 1.6-1.9(3 \mathrm{H}, \mathrm{m}), 2.2-2.8(8 \mathrm{H}, \mathrm{m}), 4.24(1 \mathrm{H}, \mathrm{dt}, J=12.4,4.6 \mathrm{~Hz}, 3-\mathrm{H}), 7.25$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}_{5}$), 8.13 ($1 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H}$); ${ }^{13} \mathrm{C}-\mathrm{nmr}(50.3 \mathrm{MHz}) \delta 24.31$ (t), 32.13 (d), 32.32 (t), 36.13 (t), 36.52 (t), 38.19 (t), 45.81 (d), 126.50 (d), 128.40 ($2 \times \mathrm{d}$), 128.77 (2 xd), 140.81 (s), 169.95 (s$), 171.53$ (s); ms m m (rel intensity) $371\left(\mathrm{M}^{+}, 1\right), 244$ (8), 227 (3), 216 (3), 199 (11), 181 (6), 171 (3), 155 (2), 140 (68), 123 (22), 117 (15), 105 (7), 104 (12), 95 (12), 91 (100), 77 (11); hrms Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{I} 371.0384$. Found 371.0392. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{I}: \mathrm{C}, 48.53 ; \mathrm{H}, 4.89 ; \mathrm{N}, 3.77$. Found: C, $48.65 ; \mathrm{H}, 4.93 ; \mathrm{N}, 3.52$.

Fragmentation of (\pm)-($\left.1 R^{*}, 4 S^{*}, 5 S^{*}\right)$-4-(1'-Methylethyl)-1-hydroxy-2-azabicyclo[3.3.0]octan-3-one (9).

 Carbinolamide (9) ($410 \mathrm{mg}, 2.24 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (75 ml) was irradiated in the presence of (diacetoxyiodo) benzene ($1.15 \mathrm{~g}, 3.58 \mathrm{mmol}$) and $\mathrm{I}_{2}(0.57 \mathrm{~g}, 2.24 \mathrm{mmol})$ for 45 min at $25^{\circ} \mathrm{C}$ as described previously to give, after chromatography (hexane-EtOAc, 85:15), (\pm)-($2 S^{*}, 3 S^{*}$)-2-(l'-isopropyl)-3-(3"-iodopropyl)-succinimide (19) ($408 \mathrm{mg}, 59 \%$), (\pm)-($2 R^{*}, 3 R^{*}$)-2-(1'-isopropyl)-3-iodo-perhydroazocine-2,8-dione (20) ($14 \mathrm{mg}, 2$ $\%$), and (\pm)-($2 R^{*}, 3 S^{*}$)-2-(${ }^{\prime}$-isopropyl)-3-iodo-perhydroazocine-2,8-dione (21) ($45 \mathrm{mg}, 6.5 \%$).Compound (19): amorphous; ir $v_{\max } 3395,1775,1725,1700,1460,1170 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{nmr}(200 \mathrm{MHz}) \delta 0.98$ $\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, 1^{\prime}-\mathrm{Me}\right), 1.04\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, 1^{\prime}-\mathrm{Me}\right), 1.7-2.1\left(4 \mathrm{H}, \mathrm{m}, 1^{\prime \prime}-\mathrm{H}_{2}, 2^{\prime \prime}-\mathrm{H}_{2}\right), 2.25(1 \mathrm{H}, \mathrm{m}$, $\left.1^{\prime}-\mathrm{H}\right), 2.47(1 \mathrm{H}, \mathrm{t}, J=4.2 \mathrm{~Hz}, 2-\mathrm{H}), 2.59(1 \mathrm{H}, \mathrm{dt}, J=4.2,6.7 \mathrm{~Hz}, 3-\mathrm{H}), 3.20\left(2 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}, 3^{\prime \prime}-\mathrm{H}_{2}\right), 9.18$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{nmr}(50.3 \mathrm{MHz}) \delta 5.81$ (t), 18.12 (q), 19.59 (q), 28.99 (d), 30.05 (t), 32.60 (t), 42.11 (d), 52.76 (d), 179.57 (s), 180.18 (s); ms m/z (rel intensity) 309 ($\mathrm{M}^{+}, 1$), 294 (1); 266 (2), 237 (1), 223 (1), 194 (2), 182 (100), 155 (6), 140 (9), 127 (6), 111 (30); hrms Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NO}_{2} \mathrm{I} 309.0228$. Found 309.09228. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NOI}$: C, $38.85 ; \mathrm{H}, 5.22 ; \mathrm{N}, 4.53$. Found: C, $38.98 ; \mathrm{H}, 5.36 ; \mathrm{N}, 4.32$.

Compound (20): $\mathrm{mp} 144-146{ }^{\circ} \mathrm{C}$ (hexane); ir $v_{\max } 3340,1690,1455,1445,1360,1295,1140 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{nmr}$ $(200 \mathrm{MHz}) \delta 1.08\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{l}^{\prime}-\mathrm{Me}\right), 1.16\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, 1^{\prime}-\mathrm{Me}\right), 1.7-2.1(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 5-\mathrm{H})$, $2.15-2.4\left(3 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}, 4-\mathrm{H}, 5-\mathrm{H}\right), 2.76(1 \mathrm{H}, \mathrm{dd}, J=6.1,13.5 \mathrm{~Hz}, 6-\mathrm{H}), 3.16(1 \mathrm{H}, \mathrm{dt}, J=6.7,14.0 \mathrm{~Hz}, 6-\mathrm{H})$, $3.34(1 \mathrm{H}, \mathrm{dd}, J=11.6,4.0 \mathrm{~Hz}, 2-\mathrm{H}), 4.51(1 \mathrm{H}, \mathrm{dm}, J=11.5 \mathrm{~Hz}, 3-\mathrm{H}), 8.02(1 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{nmr}(50.3$ $\mathrm{MHz}) \delta 15.47$ (q), 20.81 (q), 23.49 (t), 31.51 (d), 31.86 (d), 33.51 (t), 35.53 (t), 57.00 (d), 170.52 (s), 172.34 (s); ms m/z (rel intensity) 309 ($\mathrm{M}^{+}, 5$), 214 (3), 182 (100), 165 (66), 154 (18), 137 (46), 127 (14), 123 (11), 109 (25), 98 (30), 95 (56); hrms Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NO}_{2} \mathrm{I}$ 309.0228. Found 309.0200. Anal. Calcd for
$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NO}_{2} \mathrm{I}: \mathrm{C}, 38.85 ; \mathrm{H}, 5.22 ; \mathrm{N}, 4.52$. Found: $\mathrm{C}, 38.89 ; \mathrm{H}, 5.19 ; \mathrm{N}, 4.41$.
Compound (21): $\mathrm{mp} 167-169^{\circ} \mathrm{C}$ (acetone-hexane); ir $v_{\max } 3330,1690,1600,1455,1375,1360,1280,1160$, $1110 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{nmr}(200 \mathrm{MHz}) \delta 0.98\left(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, 1^{\prime}-\mathrm{Me}\right), 1.01\left(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, 1^{\prime}-\mathrm{Me}\right), 1.7-2.1$ $\left(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 5-\mathrm{H}_{2}\right), 2.25\left(1 \mathrm{H}, \mathrm{m}, \mathrm{l}^{\prime}-\mathrm{H}\right), 2.33\left(1 \mathrm{H}, \mathrm{dd}, J_{2,1}=8.9, J_{2,3}=4.1 \mathrm{~Hz}, 2-\mathrm{H}\right), 2.67(1 \mathrm{H}, \mathrm{dq}, J=4.6$, $15.1 \mathrm{~Hz}, 4-\mathrm{H}), 2.93(1 \mathrm{H}, \mathrm{dd}, J=8.3,14.5 \mathrm{~Hz}, 6-\mathrm{H}), 3.07(1 \mathrm{H}, \mathrm{dd}, J=8.8,11.7 \mathrm{~Hz}, 6-\mathrm{H}), 4.32(1 \mathrm{H}, \mathrm{dt}, J=$ $4.7,12.6 \mathrm{~Hz}, 3-\mathrm{H}), 8.28(1 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{nmr}(50.3 \mathrm{MHz}) \delta 18.89$ (q), 21.40 (q), 24.59 (t), 30.56 (d), 32.20 (d), 36.68 (t), 38.06 (t), 55.29 (d), 170.13 (s$), 171.55$ (s$) ; \mathrm{ms} \mathrm{m} / \mathrm{z}$ (rel intensity) 309 ($\mathrm{M}^{+}, 28$), 266 (1), 182 (100), 165 (60), 154 (46), 139 (19), 137 (48), 127 (36), 123 (15), 109 (38), 98 (43), 95 (98); hrms Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NO}_{2} \mathrm{I}$ 309.0228. Found 309.0237. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NO}_{2} \mathrm{I}: \mathrm{C}, 38.85 ; \mathrm{H}, 5.22 ; \mathrm{N}, 4.52$. Found: C, 38.76; H, 5.17; N, 4.58 .

Fragmentation of $(\pm)-\left(1 R^{*}, 4 S^{*}, 5 S^{*}, 1^{\prime} S^{*}\right)$-4-($\mathbf{1}^{\prime}$-Phenylethyl)-1-hydroxy-2-azabicyclo[3.3.0]octan-3-one (10). Carbinolamide (10) $(2.02 \mathrm{~g}, 8.24 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(162 \mathrm{ml})$ was irradiated in the presence of (diacetoxyiodo)benzene $(4 \mathrm{~g}, 12,4 \mathrm{mmol})$ and $\mathrm{I}_{2}(2.1 \mathrm{~g}, 8.24 \mathrm{mmol})$ as above for 40 min at $25^{\circ} \mathrm{C}$ to give, after chromatography (hexane-EtOAc, 95:5), (\pm)-($2 S^{*}, 3 S^{*}, 1^{\prime} S^{*}$)-(2-(1'-phenylethyl)-3-($3^{\prime \prime}$-iodopropyl)succinimide (22) $(1.71 \mathrm{~g}, 55.9 \%),(\pm)-\left(2 R^{*}, 3 R^{*}, 1^{\prime} S^{*}\right)$-2-(1'-phenylethyl)-3-iodoperhydroazocine-2,8-dione (24) ($60 \mathrm{mg}, 2$ $\%$), and $(\pm)-\left(2 R^{*}, 3 S^{*}, 1^{\prime} S^{*}\right)$-2-(1^{\prime}-phenylethyl)-3-iodoperhydroazocine-2,8-dione (25) ($93 \mathrm{mg}, 3 \%$).

Compound (22): $\mathrm{mp} 86-88^{\circ} \mathrm{C}$ (acetone); ir $v_{\text {max }} 3410,3070,1780,1725,1065,1455,1350,1180,705 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathrm{H}-\mathrm{nmr}(200 \mathrm{MHz}) \delta 1.51\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, 1^{\prime}-\mathrm{Me}\right), 1.6-1.9(4 \mathrm{H}, \mathrm{m}), 2.55(1 \mathrm{H}, \mathrm{dt}, J=3.9,6.5 \mathrm{~Hz}, 3-\mathrm{H})$, $2.71(1 \mathrm{H}, \mathrm{dd}, J=3.4,7.0 \mathrm{~Hz}, 2-\mathrm{H}), 3.06\left(2 \mathrm{H}, \mathrm{dt}, J=2.7,6.3 \mathrm{~Hz}, 3^{\prime \prime}-\mathrm{H}_{2}\right), 3.34(1 \mathrm{H}, \mathrm{dq}, J=7.0,6.6 \mathrm{~Hz}$, $\left.\mathrm{l}^{\prime}-\mathrm{H}\right), 7.27\left(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}_{5}\right), 8.23(1 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H}) ;{ }^{1} \mathrm{H}-\mathrm{nmr}\left(200 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 1.19\left(3 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{I}^{\prime}-\mathrm{Me}\right)$, $1.1-1.4(4 \mathrm{H}, \mathrm{m}), 2.15(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 3-\mathrm{H}), 2.45\left(2 \mathrm{H}, \mathrm{dt}, J=1.2,6.6 \mathrm{~Hz}, 3^{\prime \prime}-\mathrm{H}_{2}\right), 2.85(1 \mathrm{H}$, qui, $J=6.9 \mathrm{~Hz}$, $\left.1^{\prime}-\mathrm{H}\right), 7.0\left(6 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H}, \mathrm{Ar}-\mathrm{H}_{5}\right) ;{ }^{13} \mathrm{C}-\mathrm{nmr}(50.3 \mathrm{MHz}) \delta 5.49$ (t), 18.63 (q), 29.48 (t), 31.84 (t), 40.16 (d), 43.22 (d), 52.70 (d), 126.70 (d), 127.24 (2 xd), 128.16 (2 xd), 141.33 (s), 178.40 (s), 179.10 (s); $\mathrm{ms} \mathrm{m} / \mathrm{z}$ (rel intensity) $372\left(\mathrm{M}^{+}+1,7\right), 244$ (44), 173 (3), 145 (5), 140 (6), 128 (7), 117 (7), 105 (100), 91 (14), 77 (21); hrms Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{I}$ 372.0462. Found 372.0458. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{I}: \mathrm{C}, 48.53 ; \mathrm{H}, 4.89 ; \mathrm{N}$, 3.77. Found: C, 48.71 ; H, 4.75 ; N, 3.69.

Compound (24): mp 148.5-149 ${ }^{\circ} \mathrm{C}$ (EtOAc-hexane); ir $v_{\max } 3340,3100,3080,1690,1600,1490,1460,1405$, $1360,1340,1285,1140,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{nmr}(200 \mathrm{MHz}) \delta 1.57\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, 1^{\prime}-\mathrm{Me}\right), 1.7-2.3(4 \mathrm{H}, \mathrm{m})$, $2.69(1 \mathrm{H}, \mathrm{dd}, J=6.0,13.2,6-\mathrm{H}), 3.07(1 \mathrm{H}, \mathrm{dt}, J=6.5,13.8 \mathrm{~Hz}, 6-\mathrm{H}), 3.51\left(1 \mathrm{H}, \mathrm{dq}, J=4.3,7.2 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right)$, $3.66(1 \mathrm{H}, \mathrm{dd}, J=4.3,11.4 \mathrm{~Hz}, 2-\mathrm{H}), 4.57(1 \mathrm{H}, \mathrm{dm}, J=11.5 \mathrm{~Hz}, 3-\mathrm{H}), 7.23\left(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}_{5}\right), 7.77(1 \mathrm{H}, \mathrm{m}$, $\mathrm{N}-\mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{nmr}(50.3 \mathrm{MHz}) \delta 13.18$ (q), 23.56 (t), 31.80 (d), 33.57 (t), 35.51 (t$), 42.34$ (d), 58.62 (d), 126.80 (d), 128.04 ($2 x d$), 128.47 ($2 \times d$), 143.36 (s), 170.07 (s), 171.87 (s$) ; \mathrm{ms} \mathrm{m} / \mathrm{z}$ (rel intensity) 371 ($\mathrm{M}^{+}, 40$), 244 (77), 227 (28), 216 (21), 199 (22), 181 (13), 145 (22), 129 (31), 117 (17), 115 (18), 105 (100), 91 (28), 77 (23); hrms Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{I}$ 371.0384. Found 371.0389. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{I}: \mathrm{C}, 48.53 ; \mathrm{H}$, 4.89; N, 3.77. Found: C, 48.37; H, 5.03; N, 3.79.

Compound (25): ir $v_{\max } 3340,3080,3060,1704,1694,1600,1490,1460,1440,1400,1380,1370,1360$, 1270, 1160, 1070, 1015, $702 \mathrm{~cm}-1$; ${ }^{1} \mathrm{H}-\mathrm{nmr}(200 \mathrm{MHz}) \delta 1.33\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, 1^{\prime}-\mathrm{Me}\right), 1.60(1 \mathrm{H}, \mathrm{m}), 1.90$ $(1 \mathrm{H}, \mathrm{m}), 2.20(1 \mathrm{H}, \mathrm{m}), 2.45(1 \mathrm{H}, \mathrm{m}), 2.96(1 \mathrm{H}, \mathrm{dd}, J=9.0,14.5 \mathrm{~Hz}, 6-\mathrm{H}), 3.06(1 \mathrm{H}, \mathrm{dd}, J=4.1,9.7 \mathrm{~Hz}$, $2-\mathrm{H}), 3.13(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.32\left(1 \mathrm{H}, \mathrm{dq}, J=9.7,6.6 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 3.69(1 \mathrm{H}, \mathrm{ddd}, J=4.1,5.9,13.4 \mathrm{~Hz}, 3-\mathrm{H}), 7.32$
($5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}_{5}$), $8.24(1 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{nmr}(50.3 \mathrm{MHz}) \delta 21.32$ (q), 24.12 (t), 31.43 (d), 36.84 (t), 37.97 (t), 43.14 (d), 53.95 (d), 127.16 (d), 127.85 ($2 x d$), 128.99 ($2 x d$), 142.44 (s), 169.65 (s), 171.48 (s); $\mathrm{ms} \mathrm{m} / \mathrm{z}$ (rel intensity) 371 ($\mathrm{M}^{+}, 44$), 244 (25), 227 (25), 216 (24), 199 (29), 183 (22), 157 (21), 145 (41), 129 (44), 115 (23), 105 (100), 91 (35), 77 (30); hrms Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{I}$ 371.0384. Found 371.0381. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{I}$: C, $48.53 ; \mathrm{H}, 4.89 ; \mathrm{N}, 3.77$. Found: $\mathrm{C}, 48.67 ; \mathrm{H}, 4.75 ; \mathrm{N}, 3.83 . \mathrm{X}$-ray analysis: $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{I}$, orthorhombic, space group $P 2_{1} / c, Z=4, a=17.508(3), b=7.192, c=11.931 \AA ; \beta=95.01(5)^{\circ}$. Crystal size: $0.2 \times 0.3 \times 0.05 \mathrm{~mm}$. The data were measured on a Philips PW-1100 four-circle automatic diffractometer operating with $\mathrm{Cu}-\mathrm{K}_{\alpha}$ radiation ($\lambda=1.5418 \AA$) monochromated by graphite. The orientation matrix of the crystal was calculated from the angular setting of 25 randomly distributed reflections found in the range $10^{\circ}<\theta>25^{\circ}$. The structure was solved by means of direct methods and refined with isotropic factors. Owing to the small size of the crystal and the small number of reflections above the 2σ level, only the iodine atom was refined anisotropically. Most of the hydrogen atoms (64% of the total) were located on successive Fourier-difference maps, and introduced with a fixed isotropic thermal factor equal to that of the bonded carbon. The others were imposed at their theoretical places. An important decomposition was found during the data collection and the crystal life-time is about 10 h , the crystal turning brown upon I_{2} release. Only one crystal was used in the data collection. A very high-speed recording technique was adopted: no background measurements during the data collection and a 15 sec scanning time per reflection. The background was a posteriori evaluated from an extrapolated curve of stationary counts (time $=30 \mathrm{~s}$) obtained at different θ angles. The intensities, measured up to $\theta=65^{\circ}$, were merged and averaged after scaling as usual with an overall $R_{\text {symm }}=7.6 \%$ for 2321 measured reflections. They were reduced to \mathbf{F} structural factors by means of standard Lorentz and polarization corrections and considered as observed above the 2σ background level. The unique data set contains 1394 reflections of which 828 are above the 2σ background level.

Fragmentation of $(\pm)-\left(1 R^{*}, 4 S^{*}, 5 S^{*}, 1^{\prime} R^{*}\right)-4-\left(1^{\prime}-P h e n y l e t h y l\right)$-1-hydroxy-2-azabicyclo[3.3.0]octan-3-one (11). Carbinolamide (11) $(0.6 \mathrm{~g}, 2.45 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{ml})$ was irradiated in the presence of (diacetoxyrodo) benzene ($1.18 \mathrm{~g}, 3.7 \mathrm{mmol}$) and $\mathrm{I}_{2}(0.62 \mathrm{~g}, 2.45 \mathrm{mmol})$ as above, at $25^{\circ} \mathrm{C}$ for 50 min , to give, after chromatography (hexane-EtOAc, 90:10), (\pm)-($\left.2 S^{*}, 3 S^{*}, 1^{\prime} R^{*}\right)$-2-(1'-phenylethyl)-3-($3^{\prime \prime}$-iodopropyl)succinimide (23) $(554 \mathrm{mg}, 61 \%),(\pm)-\left(2 R^{*}, 3 R^{*}, 1^{\prime} R^{*}\right)-2-\left(1^{\prime}\right.$-phenylethyl)-3-iodoperhydroazocine-2,8-dione (26) ($27 \mathrm{mg}, 3$ $\%)$, and (\pm)-($2 R^{*}, 3 S^{*}, 1^{\prime} R^{*}$)-2-(1'-phenylethyl)-3-iodoperhydroazocine-2,8-dione (27) ($91 \mathrm{mg}, 10 \%$).

Compound (23): $\mathrm{mp} 100-101^{\circ} \mathrm{C}$ (acetone-hexane); ir $\mathrm{v}_{\max } 3395,1775,1720,1600,1450,1355,1345,1170$, $650 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{nmr}(200 \mathrm{MHz}) \delta 1.36\left(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, 1^{\prime}-\mathrm{Me}\right), 1.3-1.6(4 \mathrm{H}, \mathrm{m}), 2.59(1 \mathrm{H}, \mathrm{dt}, J=4.3,5.7$ $\mathrm{Hz}, 3-\mathrm{H}), 2.81(1 \mathrm{H}, \mathrm{dd}, J=4.2,4.2 \mathrm{~Hz}, 2-\mathrm{H}), 2.93\left(2 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}, 3{ }^{3}-\mathrm{H}_{2}\right), 3.55(1 \mathrm{H}, \mathrm{dq}, J=7.2,4.2 \mathrm{~Hz}$, $\left.1^{\prime}-\mathrm{H}\right), 7.31\left(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}_{5}\right), 8.29(1 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H}) ;{ }^{1} \mathrm{H}-\mathrm{mmr}\left(200 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 1.12\left(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{l}^{\prime}-\mathrm{Me}\right)$, $0.9-1.3(4 \mathrm{H}, \mathrm{m}), 2.33(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.4-2.7\left(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}\right.$ and $\left.3^{\prime \prime}-\mathrm{H}_{2}\right), 3.37\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right), 7.04(5 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Ar}-\mathrm{H}_{5}\right), 9.50(1 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{nmr}(50.3 \mathrm{MHz}) \delta 5.22(\mathrm{t}), 14.14$ (q), $29.69(\mathrm{t}), 32.14$ (t), 38.61 (d), 41.59 (d), 53.80 (d), 127.25 (3 xd), $128.80(2 \mathrm{xd}), 141.70(\mathrm{~s}), 178.60(\mathrm{~s}), 179.67(\mathrm{~s}) ; \mathrm{ms} \mathrm{m} / \mathrm{z}$ (rel intensity) 371 (M^{+}, 10), 244 (94), 216 (2), 173 (5), 145 (18), 129 (7), 117 (8), 105 (100), 91 (13), 77 (17); hrms Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{I}$ 371.0384. Found 371.0391. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{I}$: C, $48.53 ; \mathrm{H}, 4.89 ; \mathrm{N}, 3.77$. Found: C, 48.71; H, 4.93; N, 3.65.

Compound (26): amorphous; ir $v_{\max } 3340,1690,1600,1450,1400,1340,1265,1150,1125,905,650 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{nmr}(200 \mathrm{MHz}) \delta 1.49\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, 1^{\prime}-\mathrm{Me}\right), 1.7(1 \mathrm{H}, \mathrm{m}), 1.9-2.15(2 \mathrm{H}, \mathrm{m}), 2.3(1 \mathrm{H}, \mathrm{m}), 2.76(1 \mathrm{H}$, $\mathrm{dm}, J=14.6 \mathrm{~Hz}, 6-\mathrm{H}), 3.20(1 \mathrm{H}, \mathrm{dt}, J=5.9,14.3 \mathrm{~Hz}, 6-\mathrm{H}), 3.59\left(1 \mathrm{H}, \mathrm{dq}, J=5.7,7.0 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 3.63(1 \mathrm{H}$, dd, $J=5.7,15.8 \mathrm{~Hz}, 2-\mathrm{H}), 4.16(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 7.31\left(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}_{3}\right), 7.63\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}_{2}\right), 7.87(1 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{nmr}(50.3 \mathrm{MHz}) \delta 19.97$ (q), 24.82 (t), 32.20 (d), 33.23 (t), 35.04 (t), 41.50 (d), 59.16 (d), 127.01 (d), $128.00(2 x d), 129.70(2 x d), 141.31$ (s), 170.19 (s), 172.31 (s); ms m/z (rel intensity) 371 ($\mathrm{M}^{+}, 30$), 244 (71), 227 (21), 216 (20), 199 (20), 171 (10), 157 (12), 145 (24), 129 (33), 115 (19), 105 (100), 91 (32), 77 (26); hrms Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{I}$ 371.0384. Found 371.0379. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{I}: \mathrm{C}, 48.53 ; \mathrm{H}, 4.89 ; \mathrm{N}$, 3.77. Found: C, 48.73; H, 4.95; N, 3.50.

Compound (27): $\mathrm{mp} 194.5-196^{\circ} \mathrm{C}$ (acetone-hexane); ir $v_{\max } 3340,1700,1600,1360,1330,1280,1160 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{nmr}(200 \mathrm{MHz}) \delta 1.29(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, 1 '-\mathrm{Me}), 1.8-2.1(2 \mathrm{H}, \mathrm{m}), 2.3(1 \mathrm{H}, \mathrm{m}), 2.75(1 \mathrm{H}, \mathrm{m}), 2.75-3.2$ $(3 \mathrm{H}, \mathrm{m}), 3.33\left(1 \mathrm{H}, \mathrm{dd}, J=9.8,7.1 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 4.46(1 \mathrm{H}, \mathrm{dt}, J=4.4,12.5 \mathrm{~Hz}, 3-\mathrm{H}), 7.25\left(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}_{5}\right), 7.86$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H}$); ${ }^{13} \mathrm{C}-\mathrm{nmr}(50.3 \mathrm{MHz}) \delta 19.14$ (q), 24.71 (t), 30.11 (d), 36.80 (t), 38.17 (t), 43.45 (d), 54.12 (d), 126.73 (d), 127.59 (2 xd), 128.71 (2 xd), 144.47 (s$), 168.86$ (s$), 171.07$ (s$) ; \mathrm{ms} \mathrm{m} / \mathrm{z}$ (rel intensity) 371 ($\mathrm{M}^{+}, 75$), 244 (23), 226 (7), 216 (26), 199 (13), 183 (10), 171 (7), 157 (12), 145 (45), 131 (10), 129 (29), 115 (18), 105 (100), $91(30)$, $77(32)$; hrms Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{I}$ 371.0384. Found 371.0387. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{I}$: C, 48.53; H, 4.89; N, 3.77. Found: C, 48.64; H, 4.87; N, 3.50.

Fragmentation of (\pm)-($\left.1 R^{*}, 4 R^{*}, 5 S^{*}\right)$-4-Diphenylmethyl-1-hydroxy-2-azabicyclo[3.3.0]octan-3-one (12). Carbinolamide (12) ($225 \mathrm{mg}, 0.73 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{ml})$ was irradiated for 45 min at $25^{\circ} \mathrm{C}$ as described previously to give, after chromatography (hexane-EtOAc, 98:2), (\pm)-($2 S^{*}, 3 S^{*}$)-2-diphenylmethyl-3(3"-iodopropyl)succinimide (28) ($171 \mathrm{mg}, 52 \%$), (\pm)-($2 R^{*}, 3 \xi$)-2-diphenylmethyl-3-iodoperhydroazocine-2,8-dione (29) ($22 \mathrm{mg}, 7 \%$), and (\pm)-($2 R^{*}, 3 \xi$)-2-diphenylmethyl-3-iodoperhydroazocine-2,8-dione (30) ($26 \mathrm{mg}, 8 \%$).

Compound (28): $\mathrm{mp} 124.5-126^{\circ} \mathrm{C}$ (acetone-hexane); ir $v_{\max } 3398,1782,1727,1601,1500,1453,1345,1170$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{nmr}(200 \mathrm{MHz}) \delta 1.7-1.8(4 \mathrm{H}, \mathrm{m}), 2.75(1 \mathrm{H}, \mathrm{dt}, J=6.1,3.8 \mathrm{~Hz}, 3-\mathrm{H}), 3.05\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime \prime}-\mathrm{H}_{2}\right), 3.38$ ($1 \mathrm{H}, \mathrm{dd}, J=3.8,7.0 \mathrm{~Hz}, 2-\mathrm{H}), 4.43\left(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{l}^{\prime}-\mathrm{H}\right), 7.31\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}_{10}\right), 8.09(1 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{nmr}(50.3 \mathrm{MHz}) \delta 5.41$ (t), 29.68 (t), 32.40 (t), 44.61 (d), 51.31 (d), 52.58 (d), 127.16 (d), 127.33 (d), 128.28 (2 xd), 128.55 (2 xd), 128.66 (2 xd), 128.82 (2 xd), 140.21 (s$), 140.56$ (s$), 177.49$ (s), 178.78 (s); ms m/z (rel intensity) $433\left(\mathrm{M}^{+}, 9\right), 306(3), 278$ (1), 207 (9), 167 (100), 152 (10), 128 (3), 115 (6), 91 (4), 77 (3); hrms Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{I}$ 433.0539. Found 433.0556. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{I}: \mathrm{C}, 55.44 ; \mathrm{H}, 4.65 ; \mathrm{N}$, 3.23. Found: C, $55.23 ; \mathrm{H}, 4.73$; N, 3.25 .

Compound (29): $\mathrm{mp} 193-195{ }^{\circ} \mathrm{C}$ (acetone); ir $v_{\max } 3350,1710,1600,1490,1450,1405,1355,1325,1290$, $1260,1140,695 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{nmr}(200 \mathrm{MHz}) \delta 1.85(1 \mathrm{H}, \mathrm{m}), 2.0-2.4(3 \mathrm{H}, \mathrm{m}), 2.80(1 \mathrm{H}, \mathrm{dm}, J=14.7 \mathrm{~Hz}, 6-\mathrm{H})$, $3.28(1 \mathrm{H}, \mathrm{dt}, J=14.4,5.8 \mathrm{~Hz}, 6-\mathrm{H}), 4.27(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 3-\mathrm{H}), 4.29(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 4.75(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}$, $\left.1^{\prime}-\mathrm{H}\right), 7.28\left(8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}_{8}\right), 7.51\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}_{2}\right), 7.78(1 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{nmr}(50.3 \mathrm{MHz}) \delta 24.84$ (t), 29.76 (d), 33.42 (t), 35.01 (t), 54.45 (d), 57.62 (d), 127.02 (d), 127.10 (d), 128.57 (2 xd), 128.60 (2 xd), 129.15 (2 xd), $129.50(2 x d), 140.20(\mathrm{~s}), 140.95$ (s), 170.45 (s), 172.32 (s); ms m/z (rel intensity) $433\left(\mathrm{M}^{+}, 11\right), 306\left(\mathrm{M}^{+}-\mathrm{I}\right.$, 7), 278 (9), 261 (5), 207 (46), 178 (3), 167 (100), 152 (26), 129 (20), 115 (26), 91 (22), 77 (12); hrms Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{2}$ 306.1494. Found 306.1487. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{I}$: C, $55.44 ; \mathrm{H}, 4.65 ; \mathrm{N}, 3.23$. Found: C, 55.47; H, 4.85; N, 3.11.

Compound (30): $\mathrm{mp} 188-190^{\circ} \mathrm{C}$ (acetone-hexane); ir $\nu_{\max } 3347,3090,3060,1770,1600,1494,1452,1375$, $1362,1318,1278,1232,1158 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{nmr}(200 \mathrm{MHz}) \delta 1.76(1 \mathrm{H}, \mathrm{m}), 2.00(1 \mathrm{H}, \mathrm{m}), 2.30(1 \mathrm{H}, \mathrm{m}), 2.60$ $(1 \mathrm{H}, \mathrm{m}), 3.04(1 \mathrm{H}, \mathrm{dd}, J=8.9,14.4 \mathrm{~Hz}, 6-\mathrm{H}), 3.39(1 \mathrm{H}, \mathrm{ddd}, J=11.2,2.0,9.1 \mathrm{~Hz}, 6-\mathrm{H}), 3.85(1 \mathrm{H}, \mathrm{dd}, J=$ $3.8,10.3 \mathrm{~Hz}, 2-\mathrm{H}), 3.92(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.52\left(1 \mathrm{H}, \mathrm{d}, J=10.3 \mathrm{~Hz}, 1\right.$ ' -H), $7.31\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}_{10}\right), 8.08(1 \mathrm{H}, \mathrm{m}$, $\mathrm{N}-\mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{nmr}(50.3 \mathrm{MHz}) \delta 24.27$ (t), 31.18 (d), 37.12 (t), 38.00 (t), 51.04 (d), 54.82 (d), 126.82 (d), 127.28 (2 xd), 127.32 (d), 128.34 (2 xd), 128.99 (2 xd), 129.19 (2 xd), 140.52 (s), 142.37 (s$), 168.64$ (s$), 171.21$ (s$) ; \mathrm{ms}$ m / z (rel intensity) 433 ($\mathrm{M}^{+}, 18$), 306 (2), 278 (5), 266 (3), 224 (7), 207 (89), 178 (13), 167 (100), 165 (60), 152 (26), 129 (26), 115 (24), 105 (17), 91 (23), 77 (17); hrms Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{I} 433.0539$. Found 433.0546. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{I}$: C, $55.44 ; \mathrm{H}, 4.65 ; \mathrm{N}, 3.23$. Found: C, $55.48 ; \mathrm{H}, 4.53 ; \mathrm{N}, 3.37$.
 of carbinolamide (13) ($825 \mathrm{mg}, 3.9 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (90 ml) was irradiated in the presence of (diacetoxyiodo)benzene ($1.88 \mathrm{~g}, 5.85 \mathrm{mmol}$) and $\mathrm{I}_{2}(0.99 \mathrm{~g}, 3.9 \mathrm{mmol})$ for 30 min at $25^{\circ} \mathrm{C}$ as described previously to give, after chromatography (hexane-EtOAc, 80:20), (\pm)-($2 R^{*}, 3 S^{*}$)-2-phenyl-3-($3^{\prime \prime}$-iodopropyl)succinimide (31) ($834 \mathrm{mg}, 64 \%$) and (\pm)-($2 R^{*}, 3 \xi$)-2-phenyl-3-iodoperhydroazocine-2,8-dione (32) ($26 \mathrm{mg}, 2 \%$).

Compound (31): mp $110-111^{\circ} \mathrm{C}$ (MeOH); ir $\mathrm{v}_{\max } 3440,3025,1790,1730,1603,1500,1460,1355,1340$, $1160 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{nmr}(200 \mathrm{MHz}) \delta 1.8-2.15(4 \mathrm{H}, \mathrm{m}), 3.01(1 \mathrm{H}, \mathrm{dt}, J=5.8,7.5 \mathrm{~Hz}, 3-\mathrm{H}), 3.13(2 \mathrm{H}, \mathrm{t}, J=6.4$ $\left.\mathrm{Hz}, 3^{\prime \prime}-\mathrm{H}_{2}\right), 3.71(1 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}, 2-\mathrm{H}), 7.31\left(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}_{5}\right), 8.39(1 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{nmr}(50.3 \mathrm{MHz}) \delta$ 5.58 (t), 30.12 (t), 31.23 (t), 48.97 (d), 53.69 (d), 127.73 (2 xd), 127.96 (d), 129.12 (2 xd), 136.20 (s$), 177.72$ (s), 178.96 (s); ms m/z (rel intensity) 343 ($\mathrm{M}^{+}, 5$), 272 (14), 217 (51), 216 (100), 188 (7), 174 (21), 145 (90), 128 (23), 117 (91), 115 (95), 103 (24), 91 (87), 77 (34); hrms Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{I}$ 344.0148. Found 344.0150. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{2} \mathrm{I}$: C, $45.50 ; \mathrm{H}, 4.11 ; \mathrm{N}, 4.08$. Found: C, $45.71 ; \mathrm{H}, 4.08 ; \mathrm{N}, 3.87$.

Compound (32): mp $188-189^{\circ} \mathrm{C}$ (acetone-hexane); ir $\mathrm{v}_{\max } 3375,1705,1602,1500,1452,1410,1365,1340$, $1310,1290,1190,1145,695 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{nmr}(200 \mathrm{MHz}) \delta 1.9-2.2(2 \mathrm{H}, \mathrm{m}), 2.25-2.4(2 \mathrm{H}, \mathrm{m}), 2.90(1 \mathrm{H}, \mathrm{dd}, J=$ $5.7,15.8 \mathrm{~Hz}, 6-\mathrm{H}), 3.35(1 \mathrm{H}, \mathrm{dt}, J=7.4,15.9 \mathrm{~Hz}, 6-\mathrm{H}), 4.70(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 3-\mathrm{H}), 7.35\left(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}_{5}\right), 8.03$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{nmr}(50.3 \mathrm{MHz}) \delta 23.46$ (t), 32.29 (t), 34.12 (d), 35.59 (t), 60.67 (d), 128.43 (2 xd), 128.55 (d), 129.09 (2 xd), 137.01 (s$), 169.34$ (s), 172.12 (s$) ; \mathrm{ms} \mathrm{m} / \mathrm{z}$ (rel intensity) $343\left(\mathrm{M}^{+}, 6\right), 216$ (72), 188 (20), 173 (43), 155 (11), 145 (38), 130 (54), 129 (55), 117 (60), 115 (78), 106 (67), 98 (35), 91 (100), 77 (16); hrms Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{I}$ 344.0148. Found 344.0144. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{2} \mathrm{I}: \mathrm{C}, 45.50 ; \mathrm{H}, 4.11 ; \mathrm{N}$, 4.08. Found: C, 45.39 ; H, 4.25; N, 4.05 .

ACKNOWLEDGEMENT

This work was supported by the Investigation Programme n° PB93-0171 of the Dirección General de Investigación Científica y Técnica.

REFERENCES AND NOTES

1. R. Hernández, D. Melián, and E. Suárez, J. Org. Chem., 1994, 59, 2766.
2. H. E. Baumgarten, H. L. Smith, and A. Stakalis, J. Org. Chem., 1975, 40, 3554.
3. J. K. Kochi, 'Free Radicals,' Vol. 2, ed. by J. K. Kochi, Wiley-Interscience, New York, 1973, p. 665; P. Brun and B. Waegell, 'Reactive Intermediates,' Vol. 3, ed. by R. A. Abramovitch, Prenum Press, New York, 1983, p. 367. For a recent review of radical ring expansion reactions see: P. Dowd and W. Zhang, Chem. Rev., 1993, 93, 2091.
4. A. L. J. Beckwith, R. Kazlauskas, and M. Syner-Lyons, J. Org. Chem., 1983, 48, 4718.
5. M. K. Hargreaves, J. G. Pritchard, and H. R. Dave, Chem. Rev., 1970, 70, 439; O. H. Wheeler and O. Rosado, 'The Chemistry of Amides,' ed. by J. Zabicky, Intercience, London, 1970; S. R. Sandler and W. Karo, 'Organic Functional Group Preparations,' Vol. 3, Academic Press, London, 1972.
6. H. K. Jr. Hall and A. K. Schneider, J. Am. Chem. Soc., 1958, 80, 6409; N. Tokura, R. Tada, and K. Yokoyama; Bull. Chem. Soc. Jpn., 1961, 34, 1812.
7. T. G. Back, J. Org. Chem. 1981, 46, 1442; A. R. Doumaux and D. J. Trecker, J. Org. Chem., 1970, 35, 2121; A. L. J. Beckwith and R. J. Hickman, J. Chem. Soc. (C), 1968, 2756.
8. J. F. Bagli and H. Immer, J. Org. Chem., 1970, 35, 3499.
9. V. I. Ognyanov and M. Hesse, Helv. Chim. Acta, 1989, 72, 1522.
10. Y. Morita, M. Suzuki, and R. Noyori, J. Org. Chem., 1989, 54, 1785.
11. W. Nagata, S. Hirai, H. Itazaki, and K. Takeda, J. Org. Chem., 1961, 26, 2413.
12. A. T. Nielsen and W. H. Houlijan, Org. React., 1968, 16, 1.
13. C. F. Koelsch and C. H. Stratton, J. Am. Chem. Soc., 1944, 66, 1883.
14. Program PCMODEL from Serena Software, Bloomington, IN 47402-3076.

15 Atomic coordinates, bond lengths, and angles have been deposited at the Cambridge Crystallographic Data Centre.

16 F. A. L. Anet, Top. Curr. Chem., 1974, 45, 169. For a review of eight-membered nitrogen heterocyclic conformational analysis see: R. W. Alder and J. M. White, 'Conformational Analysis of Medium-Sized Heterocycles,' ed. by R. S. Glass, VCH, New York, 1988, p. 97.
17. D. D. Perrin and W. L. F. Armarego, 'Purification of Laboratory Chemicals,' 3rd ed., Pergamon, Oxford, 1988.
18. W. S. Emerson, G. H. Birum, and R. I. Longley, J. Am. Chem. Soc., 1953, 75, 1312.

[^0]: ${ }^{\text {a) }}$ All reactions were performed by irradiation with two 100 W tungsten-filament lamps.
 ${ }^{\text {b) }} \mathbf{M m o l}$ of (diacetoxyiodo) benzene $/ \mathrm{mmol}$ of I_{2} per mmol of substrate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
 ${ }^{\text {c) }}$) Yields are in parenthesis.
 ${ }^{\text {d) }}$ Only one isomeric iodine was obtained and the C-3 stereochemistry remains undetermined.

